(多选题)三角形内角之和等于180°,这是古希腊数学家欧几里得提出的定理。在此之后的两千多年里,人们一直把看作它任何条件下都适用的真理。但是,19世纪初,俄国数学家罗巴切夫斯基提出:在凹曲面上、三角
2023-05-10 08:31 湛江人事考试网 来源:广东华图教育
三角形内角之和等于180°,这是古希腊数学家欧几里得提出的定理。在此之后的两千多年里,人们一直把看作它任何条件下都适用的真理。但是,19世纪初,俄国数学家罗巴切夫斯基提出:在凹曲面上、三角形内角之和小于180。,随后,德国数学家黎曼提出:在球形凸面上,三角形内角之和大于180°。这说明真理是()。
答案:B,C
真理是具体的、有条件的,正确的主观认识与客观存在总是在具体的条件下和具体的范围内一致,即任何真理都有自己特定的对象、范围和条件。如果超出这些具体规定,真理就会变成谬误。宇宙中没有抽象真理。笼统地说,三角形的内角和等于l80°是不正确的,具体到平面、凹面和凸面上,三角形的内角和是不同的。从另一个角度来说,要使三角形内角和等于180°,必须限定在“平面”这一条件下。因此本题正确答案为BC。
以上是关于(多选题)三角形内角之和等于180°,这是古希腊数学家欧几里得提出的定理。在此之后的两千多年里,人们一直把看作它任何条件下都适用的真理。但是,19世纪初,俄国数学家罗巴切夫斯基提出:在凹曲面上、三角的参考答案及解析。详细信息你可以登陆湛江公务员考试网。如有疑问,欢迎向华图教育企业知道提问。点击咨询>>>
特别说明:华图题库系统旨在为考生提供高效的智能备考服务,全面覆盖公务员考试、事业单位、教师招聘、职业资格、医卫类、计算机类等领域。拥有优质丰富的学习资料和备考全阶段的高效服务,助您不断前行!关注广东华图教育微信gdhtgwy,政策问题实时答,考试信息不漏看。
华图题库平台所收集的试题内容来源于互联网,仅供学习交流使用,不构成商业目的。版权归原作者所有,如涉及作品内容、版权和其它问题,请与我们取得联系,我们将在第一时间处理,维护您的合法权益。
(编辑:湛江华图)